Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes.
نویسندگان
چکیده
PURPOSE To determine whether combining structural (optical coherence tomography, OCT) and functional (standard automated perimetry, SAP) measurements as input for machine learning classifiers (MLCs; relevance vector machine, RVM; and subspace mixture of Gaussians, SSMoG) improves diagnostic accuracy for detecting glaucomatous eyes compared with using each measurement method alone. METHODS Sixty-nine eyes of 69 healthy control subjects (average age, 62.0, SD 9.7 years; visual field mean deviation [MD], -0.70, SD 1.41 dB) and 156 eyes of 156 patients with glaucoma (average age, 66.4, SD 10.2 years; visual field MD, -3.12, SD 3.43 dB) were imaged with OCT (Stratus OCT, Carl Zeiss Meditec, Inc., Dublin, CA) and tested with SAP (Humphrey Field Analyzer II with Swedish Interactive Thresholding Algorithm, SITA; Carl Zeiss Meditec, Inc.) within 3 months of each other. RVM and SSMoG MLCs were trained and tested on OCT-determined RNFL thickness measurements from 32 sectors ( approximately 11.25 degrees each) obtained in the circumpapillary area under the instrument-defined measurement ellipse and SAP pattern deviation values from 52 points from the 24-2 grid, independently and in combination. Tenfold cross-validation was used to train and test classifiers on unique subsets of the full 225-eye data set, and areas under the receiver operating characteristic curve (AUROC) for the classification of eyes in the test set were generated. AUROC results from classifiers trained on OCT and SAP alone and those trained on OCT and SAP in combination were compared. In addition, these results were compared to currently available OCT measurements (mean retinal nerve fiber layer [RNFL] thickness, inferior RNFL thickness, and superior RNFL thickness) and SAP indices (MD and pattern standard deviation [PSD]). RESULTS The AUROCs for RVM trained on OCT parameters alone, SAP parameters alone and OCT and SAP parameters combined were 0.809, 0.815, and 0.845, respectively. The AUROCs for SSMoG trained on OCT parameters alone, SAP parameters alone, and OCT and SAP parameters combined were 0.817, 0.841, and 0.869, respectively. Combining techniques using both RVM and SSMoG significantly improved on MLC analysis of OCT, but not SAP, measurements alone. Classification performance using RVM and SSMoG was statistically similar. CONCLUSIONS RVM and SSMoG Bayesian MLCs trained on OCT and SAP data can successfully discriminate between healthy and early glaucomatous eyes. Combining OCT and SAP measurements using RVM and SSMoG increased diagnostic performance marginally compared with MLC analysis of data obtained using each technology alone.
منابع مشابه
Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements.
PURPOSE To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). METHODS Seventy-two eyes of 72 healthy control subjects (average age = 64.3 +/- 8.8 years, visual field mean deviation = -0.71 +/- 1.2 dB) an...
متن کاملGlaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers
PURPOSE The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes representing statistically independent patterns of defect in the glaucoma clusters. METHODS FDT measure...
متن کاملOptical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study.
PURPOSE Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. METHODS Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) ...
متن کاملAssessing visual field clustering schemes using machine learning classifiers in standard perimetry.
PURPOSE To compare machine learning classifiers trained on three clustering schemes to determine whether distinguishing healthy eyes from those with glaucomatous optic neuropathy (GON) can be optimized by training with clustered data. METHODS Two machine learning classifiers-quadratic discriminant analysis (QDA) and support vector machines with Gaussian kernel (SVMg)-were trained separately u...
متن کاملHeidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers.
PURPOSE To determine whether topographical measurements of the parapapillary region analyzed by machine learning classifiers can detect early to moderate glaucoma better than similarly processed measurements obtained within the disc margin and to improve methods for optimization of machine learning classifier feature selection. METHODS One eye of each of 95 patients with early to moderate gla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 49 3 شماره
صفحات -
تاریخ انتشار 2008